Using deep reinforcement learning to speed up collective cell migration
نویسندگان
چکیده
منابع مشابه
Using Case Based Heuristics to Speed up Reinforcement Learning
The aim of this work is to combine three successful AI techniques –Reinforcement Learning (RL), Heuristics Search and Case Based Reasoning (CBR)– creating a new algorithm that allows the use of cases in a case base as heuristics to speed up Reinforcement Learning algorithms. This approach, called Case Based Heuristically Accelerated Reinforcement Learning (CB-HARL), builds upon an emerging tech...
متن کاملEligibility Propagation to Speed up Time Hopping for Reinforcement Learning
A mechanism called Eligibility Propagation is proposed to speed up the Time Hopping technique used for faster Reinforcement Learning in simulations. Eligibility Propagation provides for Time Hopping similar abilities to what eligibility traces provide for conventional Reinforcement Learning. It propagates values from one state to all of its temporal predecessors using a state transitions graph....
متن کاملEncoding and Combining Knowledge to Speed up Reinforcement Learning
Reinforcement learning algorithms typically require too many ‘trial-and-error’ experiences before reaching a desirable behaviour. A considerable amount of ongoing research is focused on speeding up this learning process by using external knowledge. We contribute in several ways, proposing novel approaches to transfer learning and learning from demonstration, as well as an ensemble approach to c...
متن کاملEfficient collective swimming by harnessing vortices through deep reinforcement learning
Fish in schooling formations navigate complex flow-fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behaviour has been associated with evolutionary advantages including collective energy savings. How fish harvest energy from their complex fluid environment and the underlying physical mechanisms governing energy-extraction during collective swimming,...
متن کاملLearning to Diagnose: Assimilating Clinical Narratives using Deep Reinforcement Learning
Clinical diagnosis is a critical and nontrivial aspect of patient care which often requires significant medical research and investigation based on an underlying clinical scenario. This paper proposes a novel approach by formulating clinical diagnosis as a reinforcement learning problem. During training, the reinforcement learning agent mimics the clinician’s cognitive process and learns the op...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2019
ISSN: 1471-2105
DOI: 10.1186/s12859-019-3126-5